Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

USCAR Traction Test Methodology for Traction-CVT Fluids

2002-10-21
2002-01-2820
A traction test machine, developed for evaluation of traction-CVT fluids for the automotive consortium, USCAR, provides precision traction measurements to stresses up to 4 GPa. The high stress machine, WAMhs, provides an elliptical contact between AISI 52100 steel roller and disc specimens. Machine stiffness and positioning technology offer precision control of linear slip, sideslip and spin. A USCAR traction test methodology includes entrainment velocities from 2 to 10 m/sec and temperatures from -20°C to 140°C. The purpose of the USCAR machine and test methodology is to encourage traction fluid development and to establish a common testing approach for fluid qualification. The machine utilizes custom software, which provides flexibility to conduct comprehensive traction fluid evaluations.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

Plane Stress Fracture Toughness Testing of Die Cast Magnesium Alloys

2002-03-04
2002-01-0077
Plane stress fracture behavior was measured for magnesium alloys AM60B, AM50A, and AZ91D produced by high-pressure die casting. Compact Tension (CT) specimens were obtained from plate samples with approximately 2-5 mm thickness. The compliance unloading technique was used to record crack extension for each specimen. The AM50A and AM60B specimens exhibited stable crack extension beyond ASTM E 1820 limits for Jmax (∼ 33 kJ m-2 and 22 kJ m-2, respectively) and Δamax (2.1 mm and 1.3 mm, respectively). The data were in good agreement with a power law fit for J vs. Δa. The AZ91D samples had unstable crack extension, with a flat R-curve and a critical fracture energy Jc of ∼ 7.5 kJ m-2. All fractures were by microvoid coalescence, initiated between the primary Mg grains and the brittle Mg17Al12 phase.
Technical Paper

Techniques to Improve Springback Prediction Accuracy Using Dynamic Explicit FEA Codes

2002-03-04
2002-01-0159
Finite Element Analysis (FEA) has been successfully used in the simulation of sheet metal forming process. The accurate prediction of the springback is still a major challenge due to its sensitivity to the geometric modeling of the tools, strain hardening model, yield criterion, contact algorithm, loading pattern, element formulation, mesh size and number of through-thickness integration points, etc. The objective of this paper is to discuss the effect of numerical parameters on springback prediction using dynamic explicit FEA codes. The example used in the study is from the Auto/Steel Partnership High Strength Steel Rail Springback Project. The modeling techniques are discussed and the guidelines are provided for choosing numerical parameters, which influence the accuracy of the springback prediction and the computation cost.
Technical Paper

Specifying Steel Properties and Incorporating Forming Effects in Full Vehicle Impact Simulation

2002-03-04
2002-01-0639
Mechanical properties of as-rolled steels used in a vehicle vary with many parameters including gages, steel suppliers and manufacturing processes. The residual forming and strain rate effects of automotive components have been generally neglected in full vehicle crashworthiness analyses. Not having the above information has been considered as one of the reasons for the discrepancy between the results from computer simulation models and actual vehicle tests. The objective of this study is to choose the right material property for as-rolled steels for stamping and crash computer simulation, and investigate the effect of forming and strain rate on the results of full vehicle impact analyses. Major Body-in-White components which were in the crash load paths and whose material property would change in the forming process were selected in this study. The post-formed thickness and yield stress distributions on the components were estimated using One Step forming analyses.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Representation of Constrained/Unconstrained Layer Damping Treatments in FEA/SEA Vehicle System Models: A Simplified Approach

1999-05-17
1999-01-1680
In this study, a simplified approach to modeling the dynamics of damping treatments in FEA (Finite Element)/ SEA (Statistical Energy) models is presented. The basic idea is to represent multi-layered composite structures with an equivalent layer. The properties of the equivalent layer are obtained by using the RKU (Ross, Kerwin and Ungar) method. The procedure presented here does not require any special pre-processing of the finite element input file and it does not increase the number of active degrees of freedom in the model, thereby making it possible to include the effect of these treatments in large system/subsystem level models. The equivalent properties obtained from RKU analysis can also be used in the SEA system models. In this study, both unconstrained and constrained layer damping treatments applied to simple structures (e.g., flat panels) as well as production vehicle components are examined.
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
Technical Paper

Strain-Rate Characterization of Automotive Steel and the Effect of Strain-Rate in Component Crush Analysis

1998-09-29
982392
The effects of strain-rate and element mesh size on the numerical simulation of an automotive component impacted by a mass dropped from an instrumented drop tower was investigated. For this study, an analysis of a simple steel rail hat-section impacted by a mass moving at an initial velocity of 28Mph was performed using the explicit finite element code Radioss. Three constitutive material models: Elasto-Plastic (without strain rate), Johnson-Cook, and Zerilli-Armstrong were used to characterize the material properties for mild and high strength steel. Results obtained from the numerical analyses were compared to the experimental data for the maximum crush, final deformation shape, average crush force and the force-deflection curve. The results from this study indicate that the mechanical response of steel can be captured utilizing a constitutive material model which accounts for strain rate effect coupled with an average mesh size of 6 to 9mm.
Technical Paper

Accelerated Glass Reveal Molding Test

1998-02-23
980718
Over the past 20 years, polyvinyl chloride (PVC) has almost replaced metal in stationary glass reveal moldings with dramatic part cost savings on cars and trucks world-wide. The process of assembly is generally simple and convenient but to replace a reveal molding can be difficult. Many times, in order to replace the molding, it may also be necessary to replace or reseal the glass. In short, PVC reveal moldings, relatively inexpensive parts, are very expensive to service. Outside of general assembly and processing issues, there are 5 variables that may cause a failure in the performance of a stationary glass reveal molding. They are as follows: material degradation, crystallization, plasticizer loss, material properties, and molded-in stress. Because of modern standard PVC formulations and the material requirements of most automotive companies, material degradation, crystallization and plasticizer loss do not commonly cause failure. Material properties and molded-in stress do.
Technical Paper

Nonlinear Analysis Theory of Single Leaf Steel Springs

1988-11-01
881744
The analytical methods for single leaf steel springs should at least include two areas: (1) allowance for any curved or tapered shape, and (2) technologies to precisely predict the geometrical configuration due to large deflection. The last item is an outstanding consideration in automotive application because of the parts alignment requirement. In this paper, a practical analytical method is presented to achieve the goals mentioned above. Basically, the. flexibility method of finite element was employed in the solution technique. In the spring application, this approach can save computer time because of the elimination of matrix inversion in the internal computation. An integration form of the flexibility matrix for each element was given in this paper to allow for a tapered spring shape. This integration-formed flexibility matrix can be approximately evaluated by the Gaussian Quadrature Formula.
X